首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2372篇
  免费   260篇
  国内免费   1167篇
测绘学   14篇
大气科学   2篇
地球物理   174篇
地质学   3422篇
海洋学   112篇
天文学   7篇
综合类   35篇
自然地理   33篇
  2024年   18篇
  2023年   78篇
  2022年   123篇
  2021年   131篇
  2020年   202篇
  2019年   226篇
  2018年   172篇
  2017年   394篇
  2016年   396篇
  2015年   306篇
  2014年   311篇
  2013年   308篇
  2012年   208篇
  2011年   228篇
  2010年   136篇
  2009年   94篇
  2008年   69篇
  2007年   99篇
  2006年   90篇
  2005年   39篇
  2004年   11篇
  2003年   30篇
  2002年   24篇
  2001年   20篇
  2000年   22篇
  1999年   41篇
  1998年   3篇
  1997年   4篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1982年   2篇
  1978年   1篇
  1976年   1篇
排序方式: 共有3799条查询结果,搜索用时 15 毫秒
101.
The Qilian–Qaidam orogenic belt at the northern edge of the Tibetan Plateau has received increasing attention as it recorded a complete history from continental breakup to opening and closure of ocean basin, and to the ultimate continental collision in the time period from the Neoproterozoic to the Paleozoic. Determining a geochronological framework of the initiation and termination of the fossil Qilian Ocean subduction in the North Qilian orogenic belt plays an essential role in understanding the whole tectonic process. Dating the high-pressure metamorphic rocks in the North Qilian orogenic belt, such as blueschist and eclogite, is the key in this respect. A blueschist from the southern North Qilian orogenic belt was investigated with a combined metamorphic PT and U–Pb, Lu–Hf, and Sm–Nd multichronometric approaches. Pseudosection modeling indicates that the blueschist was metamorphosed under peak PT conditions of 1.4–1.6 GPa and 530–550 °C. Zircon U–Pb ages show no constraints on the metamorphism due to the lack of metamorphic growth of zircon. Lu–Hf and Sm–Nd ages of 466.3 ± 2.0 Ma and 462.2 ± 5.6 Ma were obtained for the blueschist, which is generally consistent with the U–Pb zircon ages of 467–489 Ma for adjacent eclogites. Lutetium and Sm zoning profiles in garnet indicate that the Lu–Hf and Sm–Nd ages are biased toward the formation of the garnet inner rim. The ages are thus interpreted to reflect the time of blueschist-facies metamorphism. Previous 40Ar/39Ar ages of phengitic muscovite from blueschist/eclogite in this area likely represent a cooling age due to the higher peak metamorphic temperature than the argon retention temperature. The differences of peak metamorphic conditions and metamorphic ages between the eclogites and adjacent blueschists indicate that this region likely comprises different tectonic slices, which had distinct PT histories and underwent high-pressure metamorphism at different times. The initial opening of the Qilian Ocean could trace back to the early Paleozoic, and the ultimate closure of the Qilian Ocean was no earlier than c. 466 Ma.  相似文献   
102.
The Yili Block is one of the Precambrian microcontinents dispersed in the Central Asian Orogenic Belt (CAOB). Detrital zircon U–Pb ages and Hf isotopic data of Neoproterozoic meta-sedimentary rocks (the Wenquan Group) are presented to constrain the tectonic affinity and early history of the Yili Block. The dating of detrital zircons indicates that both the lower and upper Wenquan Groups have two major populations with ages at 950–880 Ma and 1600–1370 Ma. Moreover, the upper Wenquan Group has two minor populations at ~ 1100 Ma and 1850–1720 Ma. According to the youngest age peaks of meta-sedimentary rocks and the ages of related granitoids, the lower Wenquan Group is considered to have been deposited during the early Neoproterozoic (900–845 Ma), whereas the upper Wenquan Group was deposited at 880–857 Ma. The zircon εHf (t) values suggest that the 1.85–1.72 Ga source rocks for the upper Wenquan Group were dominated by juvenile crustal material, whereas those for the lower Wenquan Group involved more ancient crustal material. For the 1.60–1.37 Ga source rocks, however, juvenile material was a significant input into both the upper and lower Wenquan Groups. Therefore, two synchronous crustal growth and reworking events were identified in the northern Yili Block at ca. 1.8–1.7 Ga and 1.6–1.3 Ga, respectively. After the last growth and reworking event, continuous crustal reworking took place in the northern Yili Block until the early Neoproterozoic. Comparing the age patterns and Hf isotopic compositions of detrital zircons from the Yili Block and the surrounding tectonic units indicates that the Yili Block has a close tectonic affinity to the Chinese Central Tianshan Block in the Precambrian. The Precambrian crustal evolution of the Yili Block is distinct from that of the Siberian, North China and Tarim Cratons. Such difference therefore suggests that the Yili Block and the Chinese Central Tianshan Block may have been united in an isolated Precambrian microcontinent within the CAOB rather than representing two different blocks rifted from old cratons on both sides of the Paleo-Asian Ocean.  相似文献   
103.
Archean tectonic history of the North China Craton (NCC) involved complex processes of amalgamation of microcontinents along multiple subduction zones prior to the consolidation of the major crustal blocks and their assembly into unified cratonic architecture. Here we report a suite of granitoids, diabase, metabasalts, volcanic tuff, banded iron formations and quartzite from the Yishui Complex along the southern margin of the Jiaoliao microblock within the Eastern Block of the NCC. The geochemical features of the magmatic suite are consistent with calc-alkaline magmatism in a convergent margin setting. In tectonic discrimination diagrams, the mafic suite shows variable IAB, MORB and OIB affinities typical of rocks formed in an arc-related subduction environment. Zircon grains in most of the rocks from Yishui Complex display core–rim texture with the cores showing magmatic crystallization and the narrow structureless rims corresponding to metamorphic overgrowth. The 207Pb/206Pb ages of magmatic zircons show 2504 ± 19 Ma for the volcanic tuff, 2581 ± 21 Ma for the granitoid, 2501 ± 19 Ma for the metavolcanics, 2537 ± 38 Ma for the pyroxenite, and 2506 ± 13 Ma for the diabase. Metamorphism is constrained from the 2451 ± 18 Ma and 2466 ± 23 Ma age groups in the metavolcanics and (meta-) pyroxenites. Zircons from BIF show multiple population with the oldest showing a spot age of 2503 Ma, followed by a number of distinct groups of Paleoproterozoic zircons corresponding to later thermal events. The oldest population of magmatic zircons from the quartzite shows 207Pb/206Pb mean age of 2495 ± 24 Ma. The dominantly positive εHf(t) values of the magmatic zircons from the Yishui suite are broadly consistent with a depleted mantle source with only minor input of crustal components. Their Hf crustal residence ages (TDMC) range from 2586 to 3181 Ma and Hf depleted mantle model ages (TDM) are in the range of 2548–2927 Ma. The data indicate that magma production involved Meso- to Neoarchean juvenile sources within a continental arc setting, suggesting the Jiaoliao microblock as one of the ancient continental nuclei in the NCC. We trace the continuity of a Neoarchean subduction system along the western and southern margins of the Jiaoliao microblock with convergence of the Qianhuai and Xuhuai microblocks towards the Jiaoliao microblock with subduction–accretion–collision during the Archean–Proterozoic transition.  相似文献   
104.
The Kenting Mélange on the Hengchun Peninsula, Taiwan, formed through tectonic shearing of subduction complex lithologies, probably within the plate boundary subduction channel between the Eurasian and Philippine Sea plates, with further deformation and exhumation in the Pliocene–Pleistocene during arc–continent collision. Field relations reveal a structural gradation from normal stratified turbidite sequence (Mutan Formation) through broken formation to highly sheared Kenting Mélange containing allochthonous polygenic blocks. This gradation is consistent with an increase of average vitrinite reflection values from ~ 0.72% in the Mutan Formation through ~ 0.93% in the broken formation to ~ 0.99% in the mélange, suggesting temperatures of at least 140 °C during formation of the Kenting Mélange. Zircons from gabbro in the Kenting Mélange are dated as 25.46 ± 0.18 Ma, which together with geochemical data constrains the source to South China Sea oceanic lithosphere. In combination with the field relationships, vitrinite reflectance values, microfossil stratigraphy, and offshore geophysical data from S and SE Taiwan, we propose that the Kenting Mélange initially formed at the subduction plate boundary from off-scraped trench deposits. Minor Plio–Pleistocene microfossils (< 5%) occur within the mélange in proximity to slope basin of equivalent age and were likely sheared into the mélange during out-of-sequence thrusting associated with active arc–continent collision, which in the Hengchun Peninsula commenced after 6.5 Ma.  相似文献   
105.
The NW–SE trending Longshoushan is in the southwestern margin of the Alxa Block, which was traditionally considered the westernmost part of the North China Craton (NCC). Precambrian crystalline basement exposed in the Longshoushan area was termed the “Longshoushan Complex”. This complex's formation and metamorphism are significant to understand the geotectonics and early Precambrian crustal evolution of the western NCC. In this study, field geology, petrology, and zircon U–Pb and Lu–Hf isotopes of representative orthogneisses and paragneisses in the Longshoushan Complex were investigated. U–Pb datings reveal three Paleoproterozoic magmatic episodes (ca. 2.33, ca. 2.17 and ca. 2.04 Ga) and two subsequent regional metamorphic events (ca. 1.95–1.90 Ga and ca. 1.85 Ga) for metamorphic granitic rocks in the Longshoushan Complex. U–Pb dating of the detrital magmatic zircons from two paragneisses yields concordant 207Pb/206Pb ages between 2.2 Ga and 2.0 Ga, and a small number of metamorphic zircon rims provide a ca. 1.95 Ga metamorphic age, suggesting that the depositional time of the protolith was between 2.0 and 1.95 Ga and that the sedimentary detritus was most likely derived from the granitic rocks in the Longshoushan Complex itself. Zircon Lu–Hf isotopic analyses indicate that nearly all magmatic zircons from ca. 2.0 Ga to ca. 2.17 Ga orthogneisses have positive εHf(t) values with two-stage Hf model ages (TDMC) ranging from 2.45 to 2.65 Ga (peak at ca. 2.5 Ga), indicating that these Paleoproterozoic granitic rocks were derived from the reworking of the latest Neoarchean–early Paleoproterozoic juvenile crust. Detrital magmatic zircons from two paragneisses yield scattered 176Hf/177Hf ratios, εHf(t) and TDMC values, further indicating that the sedimentary detritus was not only derived from these plutonic rocks but also from other unreported or denuded Paleoproterozoic igneous rocks. The ca. 2.15 Ga detrital magmatic zircons from one paragneiss have negative εHf(t) values with TDMC ranging from 2.76 to 3.04 Ga, indicating another important crustal growth period in the Longshoushan region. These data indicate that the Longshoushan Complex experienced Neoarchean–Early Paleoproterozoic crustal growth, approximately ca. 2.3–2.0 Ga experienced multiphase magmatic events, and approximately ca. 1.95–1.90 Ga and ca. 1.85 Ga experienced high-grade metamorphic events. The sequence of tectonothermal events is notably similar to that of the main NCC. Together with the datasets from an adjacent area, we suggest that the western Alxa Block was most likely an integrated component of the NCC from the Neoarchean to the Paleoproterozoic.  相似文献   
106.
The North Qinling Block (NQB) is an important segment of the Qinling Orogen in Central China. Here we report the results from SIMS geochronology and oxygen isotopes, as well as LA-MC-ICPMS Hf isotopic analyses on zircon grains from a suite of metamorphic rocks (felsic gneisses, garnet plagioclase amphibolites, and retrograde eclogite dikes) in the Qinling Group of the NQB. The age data show that these rocks underwent at least two episodes of metamorphism with the peak at 483–501 Ma, followed by 454–470 Ma retrograde metamorphism. These results are generally coeval with the periods of 500–480 Ma for peak metamorphism and 460–420 Ma for retrograde metamorphism previously obtained from the HP/UHP metamorphic rocks of the NQB. During the prograde and retrograde metamorphism, widespread fluid and melt circulation within the block has been identified from the geochemical features of the metamorphic zircons. The fluids that circulated in the felsic gneisses and retrograde eclogite dikes originated from the dehydration of altered oceanic basalts as inferred from the exceedingly low Th/U ratios, positive εHf(t) (> 5) and extremely δ18O (10.01–13.91‰) values in metamorphic zircons. In contrast, the melt involved in the formation of garnet plagioclase amphibolites appears to have been derived from continental sediments interlayered with the oceanic basalts since zircons crystallized during the peak and retrograde metamorphism show typical magmatic features with high U and Th contents and Th/U ratios and enriched Hf (εHf(t) =  5.42 to − 0.18) and oxygen isotope composition (δ18O around 8‰). Geochronological and geochemical features of the magmatic cores of the clear core-rim textured zircons demonstrate that the protoliths of the gneisses were intermediate-acid volcanic rocks erupted before Neoproterozoic (800 Ma), which is further supported by the intrusion of basaltic magma of asthenospheric origin as represented by protoliths of retrograde eclogite dikes, with the oldest magmatic zircon formed at 789 Ma. The protoliths of garnet plagioclase amphibolites appear to be altered oceanic basalts but had been significantly affected by the melt during the metamorphism. Combined with the previous studies, the Qinling Group experienced overall subduction in the Early Paleozoic. The NQB as represented by the Qinling Group was most likely a discrete micro-block in the Neoproterozoic, and underwent deep subduction in the Cambrian (483–501 Ma) and exhumation in Ordovician (454–470 Ma). We propose that the NQB preserves a complete cycle of tectonic evolution of an orogen from an oceanic basin spreading, and micro-continent formation to deep subduction and exhumation.  相似文献   
107.
A complete thermal history for the Qulong porphyry Cu–Mo deposit, Tibet is presented. Zircon U–Pb geochronology indicates that the mineralization at Qulong resulted from brecciation-veining events associated with the emplacement of a series of intermediate-felsic intrusions. Combined with previously published ages, our results reveal a whole intrusive history of the Qulong composite pluton. Causative porphyries were emplaced at ~ 16.0 Ma as revealed by 40Ar–39Ar dating of hydrothermal biotite (15.7 ± 0.2 Ma) and sericite (15.7 ± 0.2 Ma). Zircon and apatite (U–Th)/He (ZHe and AHe) dating of Qulong revealed that both followed similar, monotonic thermal trajectories from 900 °C (U–Pb ages: 17.5–15.9 Ma) to 200 °C (ZHe: 15.7–14.0 Ma), and that the causative porphyries experienced faster cooling at a maximum rate of greater than 200 °C/myr. The Qulong deposit was exhumed between 13.6 Ma and 12.4 Ma (AHe) at an estimated rate of 0.16–0.24 mm/y, which is consistent with previous estimates for other Gangdese Miocene porphyry deposits. Our AHe thermochronology results suggest that neither the Gangdese thrust system, nor the Yadong–Gulu graben affected or accelerated exhumation at the Qulong deposit.  相似文献   
108.
The Eastern Pontides Orogenic Belt represents one of the best examples of fossil convergent margins in the eastern Mediterranean region. However, the origin and geodynamic setting of the late Mesozoic–Cenozoic magmatism in this belt remain controversial due to lack of systematic geological, geochemical and chronological data. The general consensus is that the late Mesozoic–Cenozoic igneous activity is related to northward subduction of oceanic lithosphere in the late Mesozoic and following collision between Tauride and Pontide blocks in the early Cenozoic. Here we present a comprehensive study focusing on the origin and geodynamic setting of gabbro bodies exposed along a narrow zone, parallel to the southeastern coast of the eastern Black Sea basin, in the Northern Zone of the Eastern Pontides Orogenic Belt.The studied gabbro bodies are hosted within late Cretaceous basaltic, andesitic, and dacitic volcanics including pyroclastic rocks and interbedded sedimentary rocks. The gabbro bodies range in size from 0.1 km2 to 1.5 km2, and outcrop patterns vary from round or elliptical to markedly elongate with sharp and discordant contact with the host rocks. Their mineral assemblage includes mainly clinopyroxene, plagioclase, minor olivine, amphibole, magnetite and rarely orthopyroxene, biotite, zircon and titanite. The occurrence of sutured grain boundaries on clinopyroxene and plagioclase, and the presence of reverse compositional zoning in clinopyroxene and olivine suggest mixing between magmas of contrasting compositions during mineral growth. Thermobarometric computations indicate that the temperature at the beginning of crystallization was ~ 1250 °C and crystallization was polybaric. Zircon and titanite U–Pb ages indicate that these small intrusions were emplaced into crustal rocks of the Eastern Pontides Orogenic Belt during Lutetian (45 ± 2 Ma). The depletion of HFSE is consistent with the involvement of an arc-related source in the petrogenesis of these rocks, and low to moderate enrichment Ce, Rb, Ba, K, Pb, Sr and Th suggests that involvement of subducted oceanic sediment was modest. The low Th content and low Th/Yb indicate that the role of sediment addition was nevertheless limited. The Nd, Sr and Pb isotopic data are consistent with the interpretation that the dominant source component in these gabbros is a depleted, peridotitic mantle, and that crustal contamination is relatively unimportant. We suggest that mafic magmas that produced the gabbroic intrusions were derived from melting of a depleted mantle source under the forearc region of the Eastern Pontides Orogenic Belt during southward subduction of two oceanic plates separated by a mid-ocean ridge, leading to the formation of a slab window. We also infer fractional crystallization and assimilation during both magma storage in the crust–mantle transition zone and transfer into the overlying arc crust.  相似文献   
109.
110.
基于恐龙足迹重建攀西地区白垩纪恐龙动物群   总被引:2,自引:2,他引:0  
攀西地区没有白垩纪恐龙骨骼化石记录,对该区白垩纪恐龙动物群组合的认识尚属空白。1991年,攀西地区首次发现了恐龙足迹,此后陆续发现了8个足迹点。这些足迹点共发现9种不同的非鸟恐龙足迹(6种非鸟兽脚类、1种蜥脚类和2种鸟脚类足迹),以及翼龙和龟类足迹。共11种足迹形态类型由185道行迹(与孤立足迹)组成,可能代表着同等数量的造迹者。其中飞天山组的组合多样性最强,小坝组和雷打树组较弱。这个相对全面的足迹数据库,为该地区白垩纪四足类的古生态学普查提供了动物群的组成信息,这在该缺乏骨骼化石的地区显得尤为重要。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号